a2 United States Patent

Topan et al.

US009479520B2

US 9,479,520 B2
*QOct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

FUZZY WHITELISTING ANTI-MALWARE
SYSTEMS AND METHODS

Applicant: Bitdefender IPR Management Ltd.,
Nicosia (CY)

Inventors: Vlad L. Topan, Cluj-Napoca (RO);
Sorin V. Dudea, Bucharest (RO);
Viorel D. Canja, Bucharest (RO)

Assignee: Bitdefender IPR Management Litd.,
Nicosia (CY)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/807,076

Filed: Jul. 23, 2015

Prior Publication Data

US 2015/0326585 Al Nov. 12, 2015

Related U.S. Application Data

Continuation of application No. 14/076,466, filed on
Nov. 11, 2013, now Pat. No. 9,118,703, which is a
continuation of application No. 13/312,686, filed on
Dec. 6, 2011, now Pat. No. 8,584,235.

Provisional application No. 61/554,859, filed on Nov.
2, 2011.

Int. CL.

GO6F 21/56 (2013.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... HO04L 63/14 (2013.01); GO6F 21/56

(2013.01); GO6F 21/563 (2013.01); HO4L
63/101 (2013.01); HO4L 63/1408 (2013.01)
Field of Classification Search
None
See application file for complete search history.

Receive arget ODI from
dlient cotnputer system

(56) References Cited

U.S. PATENT DOCUMENTS

7,478,429 B2* 12009 Lyon HO4L 29/06027
726/2

11/2009 Zhao GOGF 17/30949
(Continued)

7,613,701 B2*

FOREIGN PATENT DOCUMENTS

CN 101350822 A 1/2009
CN 101924762 A 12/2010

(Continued)

OTHER PUBLICATIONS

China SIPO, Office Action mailed Dec. 29, 2015 for Chinese Patent
Application No. 201280064362.6, international filing date Sep. 5,
2012.

(Continued)

Primary Examiner — Christopher Revak
(74) Attorney, Agent, or Firm — Law Office of Andrei D
Popovici, PC

(57) ABSTRACT

In some embodiments, an anti-malware system accounts for
benign differences between non-malicious data objects, such
as differences introduced by compilers and other polymor-
phisms. A target object is separated into a multitude of code
blocks, and a hash is calculated for each code block. The
obtained set of target hashes is then compared against a
database of hashes corresponding to code blocks extracted
from whitelisted objects. A target object may be labeled as
whitelisted (trusted, non-malicious) if it has a substantial
number of hashes in common with a whitelisted object.
Objects which are slightly different from known whitelisted
objects may still receive whitelisting status. By allowing a
certain degree of mismatch between the sets of hashes of
distinct objects, some embodiments of the present invention
increase the efficiency of whitelisting without an unaccept-
able decrease in safety.

20 Claims, 8 Drawing Sheets

Label target object
according to server-ide cache

Tabel target object
aaaaa malicions

US 9,479,520 B2
Page 2

(56)

7,698,744
7,865,947
8,401,309
8,584,235
9,118,703
2005/0188032
2006/0150256

2008/0263669
2009/0083852

2010/0216434

2011/0029772

B2 *
B2 *
B2 *
B2 *
B2 *
Al

Al*

Al
Al*

Al*

Al*

4/2010
1/2011
3/2013
11/2013
8/2015
8/2005
7/2006

10/2008
3/2009

8/2010

2/2011

References Cited

U.S. PATENT DOCUMENTS

GO6F 21/10
713/150
GO6F 21/10
713/150
GO1V 5/0008
348/161
GOG6F 21/563
713/179
GOG6F 21/563

GO6F 21/10
726/27

GOG6F 21/564
726/22
HO04W 36/385
455/412.2
GO6F 21/10
713/165

2011/0113249 Al* 5/2011

2011/0167050 Al1* 7/2011
2011/0167260 A1* 7/2011

2011/0185417 A1* 7/2011

Gelbard HO4L 9/3236
713/170

Fanton ... GO6F 21/10
707/698

Fanton ... GO6F 21/10
713/165

Zhou ..o, GOG6F 21/566
726/22

FOREIGN PATENT DOCUMENTS

CN 102047260 A
JP 2010217950 A
WO 2008054732 Al
WO 2009154992 A2

5/2011
9/2010
5/2008
12/2009

OTHER PUBLICATIONS

Japan Patent Office, Office Action mailed Jul. 29, 2016 for Japanese
Patent Application No. 2014-539903, international filing date Sep.

5, 2012.

* cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 8 US 9,479,520 B2

AM

SErver sys tems

10~ WAN/Internet
30 30b
i Client Client
computer computer
FIG. 1
38
24 26
. S
Buses
Processor Memory
p
28 ~
Input devices Output devices 32
Storage devices Com. interface \3 6
34 controller
S
Client computer system

.

FI1G. 2

U.S. Patent

Oct. 25,2016 Sheet 2 of 8 US 9,479,520 B2
138
124 126
O :)
Server
Setrver Buses Server
Processor memory
Server
Server X ——
ctoraoe devices com. interface ™~
134 storag controller 136
S~
AM server system
20 FI1G. 3
42 A4 52
/ d { /
[\ [
Active Static Client AM
AM AM communication
scanner scanner | Emulator manager Scan
report
30
Code normalization 54 Hashing
engine engine
[
30
48

Client AM application

(40

Client-side cache

56

Client computer system

FI1G. 4

U.S. Patent Oct. 25, 2016 Sheet 3 of 8 US 9,479,520 B2

60 64
100 {/ v
iy .
Target Setver AM Code comparator
\ ODI ’ communication
manager
Scan I
report
/ Server AM application
50 62/
. - - 7
Whitelist Malware Outbreak
ZO\ databasc database database
68
AM server system

U.S. Patent Oct. 25, 2016

202 .
Select target object
204 Run preliminary AM scan
of target object

Malware
206

NO

Is target
suspected of being
malicious?

210

212 Unpack/dectypt target object
it needed
21 1
Perform code normalization
of target object
!
216 Compute target ODI

{

218

Target ODI
in client-side cache?

Send target ODI
222 to AM server
{
Receive scan report from
224 AM scrver
Is target
26 &

Sheet 4 of 8

228/—\

NO

YES

YES

US 9,479,520 B2

FIG. 6

208

Label target object
as malware

Label target object
as non-malicious

Update client-side cache

1

Output result of
malware scan

232/

Label target object
according to client-side cache

/

220

whitelisted?
NO

U.S. Patent

Oct. 25, 2016

PUSH EBFP
MOV EBP, ESP

PUSH EAX
XOR EAX, EAX
MOV E2X, 0x4
ADD E2X, 0x7
SUB EAX, 0x0
CMP EAX, 0x10
JE 0x405600
PUSH 0x2

POP EBX

SUB EAX, EBX
CALL 0x401000
JMP 0x401200
PUSH EDX

MOV EDX, 2
XOR EDX, EAX
TEST EAX, EAX
JNZ 0x402006
LEA ECX, [ECX + 0x0]
PUSH ECX

PUSH EAX

CALL 0x401000
MOV ESP, EBP
POP ERP

U \

7

0

PUSH DX
ADD TOX, 0
JE 0Ox0

SUB 20X, EBX 74
CALL 0x0
JMP DxD

PUSH 3SP

XOR 252, EDX
JKE DxD

PUSI IBP

|ELSH LDX I

CALL 00

Sheet 5 of 8

EBP will be replaced with
ESP will be replaced with
end of function prolog ->
EAX will be replaced with

sets EAX to 0 -> will be removed

MOV operation —-> removed

replaced with ADD EDX, 0x0
does not modify EAX —-> removed

CMP operation -> removed
replaced with JE 0x0

US 9,479,520 B2

will be removed

PUSH followed by POP -> replaced with MOV EBX,

0x0, and therefore removed
replaced with SUB EDX, EBX

replaced with CALL 0x0
replaced with JMP 0x0

EDX will ke replaced with ESP

MOV operation -> removed

replaced with XOR ESP, EDX

TEST operation -> removed
replaced with JNE 0x0

replaced with MOV EBP, 0 and removed

replaced with PUSH EBP
replaced with PUSH EDX
replaced with CALL 0x0

end of function epilog -> removed

FIG. 7

U.S. Patent Oct. 25, 2016

Prefix Opcode Opcode

Sheet 6 of 8 US 9,479,520 B2

Mod Reg R/M

Displacement/Data

10000000

11110001

00010010

\ 82d

FIG. 8

82¢ J
K 80

[ousa epx — 52

I ADD EDX, O ! 03 D2 0 20
| JE 0x0 | 74

ISUB EDX, EBX ! 2B Dz D3
| CALL 0x0 | FE 50

I JMP 0x0 ! EB

| PUSH ESP | 50 D4
IXOR ESP, EDX ! 33 D4 D2
| JNE 0x0 | 75

I PUSH EBP ! 50 Db
L?US?_EE%____“J 52

F1G. 9

U.S. Patent Oct. 25, 2016 Sheet 7 of 8 US 9,479,520 B2

oV chp, osp -
| zusk OFFFFFFFFA | 74a 102
| susk address | Q
| ToV , —arge fs:0 | 902
| '?jnﬂf FID
| 104a
| mov S _,,//
| 1ea Opcode Pattern ——={ 14ABT226
call
: oV lebp+d], O : //-\\\\ 104b
c AD nctlor
[];if ?iépfhg o | 90b Opcode Pattern ——] 4DE12216 %
e 227, 4
| TV “ebp—17] |
[cu I 104c
- 2
| Opcode Pattern —— 883252A6 | 7
r .
| ToV ebp, esp
| cusk OFFFFFFFFA 90c
| cusk address
| 0
|
| sub esp: 4B4h
| TV [ebp+td], ecx 1 106
| Tea eox, ‘ehp-4°
| call Fineo_on N
| mov [ebpid], © 130
call API_Functlon
| [ebpt 2., eax
| “ebp-12]
| sust EES 3
S, J
call Fonction
TIOV [ebptvar 4BC], eax
Jmo srorl —oc 4011AD
TIO0V [ekplvar 4BC], O
TIOV edx, [ebptva-_A1RC]
TI0V lekbptvar 498, edx
TI0V byze ptr [ebp-var 41,0
0V eax, [ebptvar 41B8]
TIO0V ecx, [ebplvaxr 498]
TIOV [eax+0C4k], eox
oV cdx, [chptvas 4B8] 100
TIO0V ecx,
FSaI™ TAPT rusclion]

TIOV [ebptl2], eax
Zea cox, [chp+l2]
call API Function
oush eax

_ca cex, [cbptd]
call API T'unction
oush eax

TI0V eax, lebp+lZ]
TIOV ecx, [eaxllg]

gul 104310
TIO0V [ekp!l2], eax : FIG 10
cmo [ebptlZz], @
Jz lakel I _
oV ecx, [ebpld] | 74c
oo dword otr [ecx+4],0 |

i
W
=
[

Jjz lakel |
TIOV edx, [ebpt4]
d

U.S. Patent

Oct. 25, 2016

Receive target ODI from
client computer system

Target ODI in
server-side cache?

Filter codeblock indicators
to produce relevant subset

!

314

324

326

Retrieve reference hash sets
from whitelist DB

|

Compute whitelisting
similarity score

High
whitelisting score?

Retrieve reference hash sets
from malware/outbreak DB

{

Compute malware/outbreak
similarity score

High

Sheet 8 of 8 US 9,479,520 B2
FIG. 11
N
302
306
YES Label target object

according to server-side cache

Send scan report to 308
client computer system
322
Update server-side cache
| 320

Update whitelist/
malware/outbreak DBs

Label target object
as non-malicious

330

malware /outbreak
score?

Label target object

as malware

US 9,479,520 B2

1
FUZZY WHITELISTING ANTI-MALWARE
SYSTEMS AND METHODS

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/076,466, filed Nov. 11, 2013, now U.S. Pat.
No. 9,118,703, which is a continuation of U.S. patent
application Ser. No. 13/312,686, filed Dec. 6, 2011, now
U.S. Pat. No. 8,584,235, which claims the benefit of the
filing date of U.S. Provisional Patent Application No.
61/554,859, filed Nov. 2, 2011. All three above-referenced
documents are hereby incorporated by reference in their
entireties.

BACKGROUND

The invention relates to systems and methods for protect-
ing users from malicious software, and in particular to
software whitelisting.

Malicious software, also known as malware, affects a
great number of computer systems worldwide. In its many
forms such as computer viruses, worms, Trojan horses, and
rootkits, malware presents a serious risk to millions of
computer users, making them vulnerable to loss of data,
identity theft, and loss of productivity, among others.

Computer programs dedicated to malware scanning
employ various methods of detecting and eliminating mal-
ware from user computer systems. Such methods include
behavior-based techniques and content-based techniques.
Behavior-based methods may involve allowing a suspected
program to execute in an isolated virtual environment,
identifying malicious behavior, and blocking the execution
of the offending program. In content-based methods, the
contents of a suspected file are commonly compared to a
database of known malware-identifying signatures. If a
known malware signature is found in the suspected file, the
file is labeled as malicious.

Other methods of combating malware employ application
whitelisting, which comprises maintaining a list of software
and behaviors that are allowed on a user’s computer system,
and blocking all other applications from executing. Such
methods are particularly effective against polymorphic mal-
ware, which is able to randomly modify its malware-iden-
tifying signature, rendering conventional content-based
methods ineffective.

Some whitelisting applications employ hash values to
identify and ensure the integrity of whitelisted software. A
cryptographic hash may be created for a file or group of files
affiliated with a whitelisted application and stored for ref-
erence. The respective application is then authenticated by
comparing the stored hash to a new hash generated at
runtime.

The performance of anti-malware whitelisting methods
may depend on the capability to maintain and update
whitelist databases in an efficient and flexible manner.

SUMMARY

According to one aspect, a method comprises employing
at least one hardware processor of a computer system to
receive a plurality of target hashes computed for a target data
object, each target hash representing a distinct sequence of
processor instructions of the target data object. The method
further comprises employing at least one hardware processor
of the computer system to retrieve a plurality of reference

10

15

20

25

30

35

40

45

50

55

60

65

2

hashes representing a whitelisted data object. The method
further comprises employing at least one hardware processor
of the computer system to label the target data object as
non-malicious in response to determining that the plurality
of target hashes is not identical to the plurality of reference
hashes, and in response to determining, according to a count
of hashes common to both the plurality of target hashes and
the plurality of reference hashes, that the plurality of target
hashes and the plurality of reference hashes share a sufficient
number of items.

According to another aspect, a non-transitory computer-
readable medium stores instructions which, when executed
by a computer system having at least one hardware proces-
sor, cause the computer system to receive a plurality of
target hashes computed for a target data object, each target
hash representing a distinct sequence of processor instruc-
tions of the target data object. The instructions further cause
the computer system to retrieve a plurality of reference
hashes representing a whitelisted data object, and to label the
target data object as non-malicious in response to determin-
ing that the plurality of target hashes is not identical to the
plurality of reference hashes, and in response to determin-
ing, according to a count of hashes common to both the
plurality of target hashes and the plurality of reference
hashes, that the plurality of target hashes and the plurality of
reference hashes share a sufficient number of items.

According to another aspect, a computer system com-
prises at least one hardware processor and a memory, the at
least one hardware processor configured to form means for
receiving a plurality of target hashes computed for a target
data object, each target hash representing a distinct sequence
of processor instructions of the target data object. The at
least one hardware processor is further configured to form
means for retrieving a plurality of reference hashes repre-
senting a whitelisted data object. The at least one hardware
processor is further configured to form means for labeling
the target data object as non-malicious in response to deter-
mining that the plurality of target hashes is not identical to
the plurality of reference hashes and in response to deter-
mining, according to a count of hashes common to both the
plurality of target hashes and the plurality of reference
hashes, that the plurality of target hashes and the plurality of
reference hashes share a sufficient number of items.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and advantages of the present
invention will become better understood upon reading the
following detailed description and upon reference to the
drawings where:

FIG. 1 shows an exemplary anti-malware system accord-
ing to some embodiments of the present invention.

FIG. 2 illustrates an exemplary hardware configuration of
a client computer system according to some embodiments of
the present invention.

FIG. 3 shows an exemplary hardware configuration of an
anti-malware server system according to some embodiments
of the present invention.

FIG. 4 shows a diagram of an exemplary anti-malware
application executing on the client computer system accord-
ing to some embodiments of the present invention.

FIG. 5 shows exemplary applications executing on the
anti-malware server system according to some embodiments
of the present invention.

FIG. 6 illustrates an exemplary sequence of steps per-
formed by the client anti-malware application of FIG. 4
according to some embodiments of the present invention.

US 9,479,520 B2

3

FIG. 7 shows an example of code normalization accord-
ing to some embodiments of the present invention.

FIG. 8 shows an exemplary memory representation of a
processor instruction according to some embodiments of the
present invention.

FIG. 9 shows an exemplary code block and an exemplary
opcode pattern corresponding to the code block according to
some embodiments of the present invention.

FIG. 10 illustrates an exemplary fragment of code com-
prising a plurality of code blocks and an exemplary object
data indicator (ODI) corresponding to the fragment of code,
according to some embodiments of the present invention.

FIG. 11 shows an exemplary sequence of steps performed
by the server anti-malware application of FIG. 5 according
to some embodiments of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

In the following description, it is understood that all
recited connections between structures can be direct opera-
tive connections or indirect operative connections through
intermediary structures. A set of elements includes one or
more elements. Any recitation of an element is understood
to refer to at least one element. A plurality of elements
includes at least two elements. Unless otherwise required,
any described method steps need not be necessarily per-
formed in a particular illustrated order. A first element (e.g.
data) derived from a second element encompasses a first
element equal to the second element, as well as a first
element generated by processing the second element and
optionally other data. Making a determination or decision
according to a parameter encompasses making the determi-
nation or decision according to the parameter and optionally
according to other data. Unless otherwise specified, an
indicator of some quantity/data may be the quantity/data
itself, or an indicator different from the quantity/data itself.
Computer programs described in some embodiments of the
present invention may be stand-alone software entities or
sub-entities (e.g., subroutines, code objects) of other com-
puter programs. Unless otherwise specified, a target object is
a file or a process residing on a client computer system. An
identifier of a target object comprises data that allows the
selective identification and retrieval of the target object
itself, not merely as part of a larger data structure such as the
entire memory of a client computer system. Unless other-
wise specified, an object data indicator (ODI) of a target
object comprises features of the target object data (e.g., a
code block, an opcode pattern, a hash) conducive to deter-
mining whether the target object is malicious, e.g. infected
with malware. Unless otherwise specified, a hash is an
output of a hash function. Hash functions are mathematical
transformations mapping sequences of symbols (e.g. char-
acters, bits) into shorter sequences of numbers or bit strings.
A target hash is a hash computed on data of a target object.
Unless otherwise specified, the term whitelisted is under-
stood to mean trusted to be clean, i.e. not containing
malware. A first set is identical to a second set when all
elements of the first set are contained in the second set, and
all elements of the second set are contained in the first set.
Computer readable media encompass non-transitory media
such as magnetic, optic, and semiconductor storage media
(e.g. hard drives, optical disks, flash memory, DRAM), as
well as communications links such as conductive cables and
fiber optic links. According to some embodiments, the
present invention provides, inter alia, computer systems
comprising hardware (e.g. one or more processors) pro-

10

15

20

25

30

40

45

55

60

65

4

grammed to perform the methods described herein, as well
as computer-readable media encoding instructions to per-
form the methods described herein.

The following description illustrates embodiments of the
invention by way of example and not necessarily by way of
limitation.

FIG. 1 shows an exemplary malware detection system 10
according to some embodiments of the present invention.
System 10 comprises a set of anti-malware (AM) server
systems 20a-c and a set of client computer systems 30a-b.
Client computer systems 30aq-b may represent end-user
computers each having a processor, memory, and storage,
and running an operating system such as Windows®,
MacOS® or Linux. Some client computer systems 30a-b
may represent mobile computing and/or telecommunication
devices such as tablet PCs and mobile telephones. In some
embodiments, client computer systems 30a-b may represent
individual customers, or several client computer systems
may belong to the same customer. In some embodiments,
one of systems 30a-b may be a server computer such as a
mail server, in which case malware detection services may
be used to identify malware present in emails or other
messages sent to multiple clients, and to take appropriate
action (e.g. remove or quarantine malware-infected items)
before the messages are delivered to the clients. A network
12 connects client computer systems 30a-c and anti-mal-
ware server systems 20a-c. Network 12 may be a wide-area
network such as the Internet. Parts of network 12, for
example a part of network 12 interconnecting client com-
puter systems 30a-b, may also include a local area network
(LAN).

FIG. 2 shows an exemplary hardware configuration of a
client computer system 30. In some embodiments, system 30
comprises a processor 24, a memory unit 26, a set of input
devices 28, a set of output devices 32, a set of storage
devices 34, and a communication interface controller 36, all
connected by a set of buses 38.

In some embodiments, processor 24 comprises a physical
device (e.g. multi-core integrated circuit) configured to
execute computational and/or logical operations with a set of
signals and/or data. In some embodiments, such logical
operations are delivered to processor 24 in the form of a
sequence of processor instructions (e.g. machine code or
other type of software). Memory unit 26 may comprise
volatile computer-readable media (e.g. RAM) storing data/
signals accessed or generated by processor 24 in the course
of carrying out instructions. Input devices 28 may include
computer keyboards and mice, among others, allowing a
user to introduce data and/or instructions into system 30.
Output devices 32 may include display devices such as
monitors. In some embodiments, input devices 28 and
output devices 32 may share a common piece of hardware,
as in the case of touch-screen devices. Storage devices 34
include computer-readable media enabling the non-volatile
storage, reading, and writing of software instructions and/or
data. Exemplary storage devices 34 include magnetic and
optical disks and flash memory devices, as well as remov-
able media such as CD and/or DVD disks and drives.
Communication interface controller 36 enables system 30 to
connect to a computer network and/or to other machines/
computer systems. Typical communication interface con-
trollers 36 include network adapters. Buses 38 collectively
represent the plurality of system, peripheral, and chipset
buses, and/or all other circuitry enabling the inter-commu-
nication of devices 24-36 of computer system 30. For
example, buses 38 may comprise the northbridge bus con-

US 9,479,520 B2

5

necting processor 24 to memory 26, and/or the southbridge
bus connecting processor 24 to devices 28-36, among others.

FIG. 3 shows a hardware configuration of an exemplary
AM server system 20 of systems 20a-¢, according to some
embodiments of the present invention. AM server system 20
may be a computer system comprising a server processor
124, a server memory 126, a set of server storage devices
134, and a server communication interface controller 136,
all connected to each other via a set of server buses 138.
Although some details of hardware configuration may differ
between server system 20 and client computer system 30,
the scope of devices 124, 126, 134, 136 and 138 may be
similar to that of devices 24, 26, 34, 36 and 38 described
above, respectively.

Client computer system 30 may include a client anti-
malware (AM) application 40 and a client-side cache 56, as
shown in FIG. 4. In some embodiments, client AM appli-
cation 40 may be a stand-alone application, or may be an
anti-malware module of a security suite having antivirus,
firewall, anti-spam, and other modules. Client AM applica-
tion may comprise an active AM scanner 42, a static AM
scanner 44, an emulator 46 connected to static AM scanner
44, a code normalization engine 48 connected to scanners 42
and 44, a client AM communication manager 52 and a
hashing engine 54 connected to communication manager 52
and code normalization engine 48.

In some embodiments, client AM application 40 is con-
figured to conduct a client-side part of a client-server
collaborative scan to detect malware stored on computer-
readable media forming part of client computer system 30
(e.g. memory, hard drive), or on computer-readable media
connected to system 30 (e.g. memory stick, external hard
drive, network devices, etc.). As part of a client-server
collaborative scan, client AM application 40 is configured to
send a target object data indicator (ODI) 100 to AM server
systems 20a-c and to receive a scan report 50 from systems
20a-c.

Target objects scanned by AM application 40 include
computer files and processes. Each process may include a set
of loaded memory modules (i.e. loaded images of a target
executable file and its referenced dynamic linked libraries),
as well as any additional files corresponding to the loaded
memory modules. A target object may be considered mal-
ware if it contains at least a part of a malicious software
entity (e.g. virus, worm, Trojan).

In some embodiments, ODI 100 comprises a plurality of
code block indicators, each code block indicator indicative
of a distinct code block of the target object. Exemplary
contents and formats of ODI 100 will be discussed in detail
in relation to FIGS. 7-9.

In some embodiments, scan report 50 includes an iden-
tifier (e.g., tag, file ID) of the target object, a malware status
indicator (e.g., infected, clean, unknown) of the target
object, and/or a set of identifiers of malware agents infecting
the target object, such as names of individual malware
agents (e.g., Win32.Worm.Downadup.Gen), malware class
indicators (virus, rootkit, etc.), or pointers to the respective
agents in a malware knowledgebase. In some embodiments,
a single scan report may be compiled for a batch of target
objects.

In some embodiments, server communication manager 52
is configured to manage communication with server AM
systems 20a-c. For example, manager 52 may establish
connections over network 12, send and receive data to/from
AM servers 20a-c, maintain a list of ongoing scan transac-
tions, and associate target ODIs 100 with AM servers
carrying out the server-side scanning.

25

30

40

45

50

55

60

6

Active AM scanner 42 and static AM scanner 44 enable
client AM application 40 to run a preliminary anti-malware
scan of the target object, as shown in more detail below. If
the preliminary scan detects malicious content, the offending
target object is reported to the user directly, without having
to go through client-server scanning, thus saving time and
computer resources. In some embodiments, file target
objects are handled by static AM scanner 44, while process
target objects are handled by active AM scanner 42. In some
embodiments, static AM scanner 44 may use emulator 46 to
unpack a file and execute it in a protected environment, apart
from main memory. Scanners 42, 44 may use behavior-
based methods, various heuristics, content-based methods
(e.g. signature matching), or a combination thereof, to
determine whether the target object is malware. Examples of
heuristic criteria for determining whether a target object is
malicious comprise, among others, the relative sizes of
various sections in the portable executable (PE) file of the
target object, the information density in each section, the
presence of specific flags and flag groups in the PE header,
information about the packer/protector (if any), and the
presence of certain text patterns inside the executable.

Client AM application 40 may employ code normaliza-
tion engine 48 and hashing engine 54 to produce target ODI
100. The operation of code normalization engine 48 will be
discussed below in relation to FIG. 7. Hashing engine 54 is
configured to receive an opcode pattern and to generate a
hash of the respective opcode pattern, as shown in relation
to FIGS. 8-9. In some embodiments, a hash is the output of
a hash function, a mathematical transformation mapping a
sequence of symbols (e.g. characters, bits) into a sequence
of numbers or bit string. Exemplary hash functions
employed by hashing engine 54 include cyclic redundancy
check (CRC), message digest (MD), or secure hashing
(SHA), among others. An exemplary hash is the 4-byte
CRC32.

Some embodiments of client-side cache 56 comprise, at
any given time, a repository of ODIs corresponding to target
objects residing on the respective client system 30, objects
having already been scanned for malware. In some embodi-
ments, cache 56 may comprise a set of hashes of target
object ODIs; each ODI received from client systems 30 may
be hashed, with duplicate hashes removed, and resulting
hashes stored as unique indicators of the respective ODIs.
Cache 56 allows for a speed-up of malware scanning. If the
ODI or hash thereof of a target object is found in client cache
56, indicating that the respective target object has already
been scanned at least once, the malware status of the target
object may be retrieved directly from cache 56 and reported
to the user, a process considerably faster than performing a
new scan of the target object. For every ODI, some embodi-
ments of cache 56 may comprise an object identifier (e.g.,
tag, file ID), and an indicator of malware status of the
respective target object.

FIG. 5 shows exemplary applications executing on AM
server system 20 according to some embodiments of the
present invention. In some embodiments, system 20 com-
prises a server AM application 60, a server-side cache 68, a
whitelist database 65, a malware database 66, and an out-
break database 674, all connected to AM server application
60.

In some embodiments, AM server application 60 is con-
figured to perform a plurality of malware detection transac-
tions with client computer systems 30a-b. For each such
transaction, server AM application 60 is configured to con-
duct a server-side part of a collaborative scan to detect
malware residing on the respective client computer system,

US 9,479,520 B2

7

as described in detail below. As part of a client-server
transaction, application 60 receives target ODI 100 from the
client computer system, and transmits scan report 50 to the
respective client computer system. Server AM application
60 may comprise a server AM communication manager 62
and a code comparator 64 connected to communication
manager 62.

In some embodiments, server communication manager 62
is configured to manage communication with client com-
puter systems 30a-b. For example, manager 62 may estab-
lish connections over network 12, send and receive data
to/from clients, maintain a list of ongoing scan transactions,
and associate target ODIs 100 with originating client com-
puter systems 30a-b. Code comparator 64 is configured to
compute a similarity score indicating a degree of similarity
between a target object and a set of reference objects stored
in databases 65-67, as described in detail below.

In some embodiments, server-side cache 68 comprises a
repository of ODIs of target objects having already been
scanned for malware, ODIs received from various client
computer systems 30a-b in the course of previous client-
server collaborative scans. As discussed further below, if the
ODI of a target object is found in server cache 68, indicating
that the respective target object has already been scanned at
least once, the malware status (e.g. clean, infected, etc.) of
the target object may be retrieved from cache 68 without
performing a new scan of the target object. Along with target
ODIs, some embodiments of server cache 68 may store the
malware status (e.g. clean, infected) of the respective target
object.

Databases 65-67 are maintained as repositories of current
malware-related knowledge. In some embodiments, each
database 65-67 comprises a set of data indicators corre-
sponding to a collection of reference objects (files and
processes) of known malware status. In some embodiments,
databases 65-67 store data in the form of opcode pattern
hashes (described further below in relation to FIGS. 7-10).
Whitelist database 65 includes a set of hashes retrieved from
objects which are trusted to be clean (i.e., whitelisted items).
Malware database 66 comprises malware-identifying hashes
retrieved from objects known as malware. In some embodi-
ments, outbreak database 67 comprises hashes computed for
objects which are of unknown malware status (not yet
recognized as malware or clean).

In some embodiments, all opcode pattern hashes stored in
databases 65-67 have the same size (e.g. 4 bytes). They may
be stored sequentially in the memory and/or computer-
readable media of server systems 20a-c. In some embodi-
ments, a second data structure comprising object identifiers
(e.g., file IDs also represented as 4 byte numbers) is stored
alongside the set of reference hashes. A bi-directional map-
ping stored in the memory of the respective AM server is
used to relate each hash to the file ID of the object it was
retrieved from. This allows server AM application to selec-
tively retrieve reference hashes, to determine whether target
objects received from client computer systems are similar to
any reference objects stored in databases 65-67. Databases
65-67 are being kept up-to-date by addition of target object
data received from client computer systems 30a-b, as further
described below.

FIG. 6 shows an exemplary sequence of steps performed
by client AM application 40 according to some embodi-
ments of the present invention. In a step 202, application 40
selects a target object to scan for malware. In some embodi-
ments, target objects may be specified directly or indirectly
by a user (on-demand scanning). For example, the user may
instruct AM application 40 to scan a certain file, or the

10

15

20

25

30

35

40

45

50

55

60

65

8

contents of a certain folder, or the contents stored on a
certain computer-readable medium (e.g. CDROM, flash
memory device). Other exemplary target objects are selected
during on-access scanning, wherein application 40 is con-
figured to scan certain types of files or processes before
reading/loading/launching them. In some embodiments, a
set of target objects may be compiled for the purpose of a
scheduled scan of the client computer system running appli-
cation 40. Such an exemplary set of target objects residing
on a client system running Microsoft Windows® may
include executable files from the WINDIR folder,
executables from the WINDIR/system32 folder, executables
of the currently running processes, dynamic link libraries
(DLL) imported by the currently running processes, and
executables of all installed system services, among others. In
some embodiments, target objects may also include files/
processes targeted by malware programs of interest, for
example malware programs considered most widespread
and active at the time of initiation of the respective malware
scan.

In some embodiments, an identifier (e.g., file ID) is used
to uniquely tag the respective target object. The identifier
comprises data allowing a selective identification of the
target object itself (e.g., a file or process), and not as part of
a larger structure such as e.g. the entire memory of the
respective client computer system. Exemplary target object
identifiers comprise file paths and memory addresses,
among others. The identifier also allows client AM applica-
tion 40 to selectively retrieve the target object, in order to
compute target ODI 100, as well as to unambiguously
perform client-server scan transactions with multiple target
objects.

In a step 204 (FIG. 6), client AM application 40 may run
apreliminary anti-malware scan of the target object. In some
embodiments, file target objects are handled by static AM
scanner 44, while process target objects are handled by
active AM scanner 42. Scanners 42, 44 may use behavior
methods (e.g., emulation), various heuristics (e.g., the geom-
etry of a portable executable header of the target object),
content-based methods (e.g. signature matching), or a com-
bination thereof, to determine whether the target object is
malware. In some embodiments, scanners 42, 44 may pro-
duce an indicator of the malware status of the target object.
Exemplary status indicators include malicious, suspected of
being malicious, and clean, among others.

In some embodiments, a target object may be suspected of
being malicious when the target object has some features in
common with known malicious objects, but not enough to be
considered malware. Exemplary suspicious features include
the presence within the PE header of the target object of
certain values/value pairs, the presence within the target
object of certain code sequences (e.g., code that checks
whether the target object is executing within a virtual
environment), and the presence of malware-identifying text
patterns (signatures) such as common passwords and names
and/or path indicators of anti-malware software, among
others. Other suspicious features may comprise certain mal-
ware-identifying behavior patterns of the target object.

In some embodiments, scanners 42, 44 compute a mal-
ware score for the respective target object, wherein each
malware-identifying feature may be given a specific weight.
When the malware score exceeds a first threshold, the
respective target object may be suspected of being mali-
cious; when the score exceeds a second, higher threshold,
the target object may be labeled as malware. An exemplary
target object containing strings specific to the IRC protocol,
names of antivirus programs, common Windows® pass-

US 9,479,520 B2

9

words, and code sequences specific to exploits may receive
a comparatively high malware score, and may therefore be
labeled malware, while another exemplary target object,
which only contains the names of some anti-malware appli-
cations, may receive a relatively low score, but may still be
suspected of being malicious.

In a step 206, application 40 determines whether the target
object is malicious according to the preliminary malware
scan. If no, the operation of application 40 proceeds to a step
210 described below. If yes, in a step 208, AM application
40 labels the target object as malware and updates client-side
cache 56 accordingly, in a step 230. Next, client AM
application 40 outputs the result of the malware scan in a
step 232.

In some embodiments, step 232 may comprise issuing an
alert (e.g., a pop-up window) to inform the user that the
respective client computer system may be infected. Alter-
natively, application 40 may document the malware scan in
a system log. Some embodiments of AM application 40 may
display a scan report to the user, the report comprising,
among others, the name (or object identifier) of the target
object, an indicator of the type of malware detected, and
additional information regarding the respective malware
(e.g. possible cleanup methods).

In step 210, client AM application 40 may determine
whether the target object is suspected of being malicious
according to a result of the preliminary scan (see step 204
above). If yes, the operation proceeds to a step 212 discussed
below. If no, in a step 228, application 40 may label the
target object as non-malicious (clean) and proceed to step
230.

In step 212, when the target object is a file, application 40
may load the target file in a protected environment provided
by emulator 46, to remove any layers of packing and/or
encryption protecting the code of the target object. When the
target object is a process, the operation of application 40
may skip step 212, since the target object will already be
loaded into system memory.

In a step 214, code normalization engine 48 performs a
code normalization of the target object. Compilers can
generate different machine code from the same block of
source code depending on the compilation parameters used,
particularly due to code optimization. Additional code varia-
tions may be introduced by protector/polymorphic malware.
In some embodiments, code normalization comprises trans-
forming the set of processor instructions forming the target
object into a standardized set of processor instructions, to
remove variations of computer code introduced by compi-
lation and/or other polymorphisms. An exemplary code
normalization operation may proceed as follows:

1. The compiler used to build the target object is detected
according to certain features of the target object. When the
compiler is known, a location of the object-specific code
inside the memory image of the target object is determined.
When the compiler cannot be determined, the target areas
for code extraction are selected so as to cover as many
potential object-specific code locations as possible (e.g.,
entry point, beginning of first section, beginning of all
sections etc.).

2. Code disassembly begins at the location found in the
previous step. In some embodiments, code disassembly
follows code branches (e.g., IMP/Jxx/CALL in x86 code).
The disassembled instructions are processed in sequence. As
part of the normalization process, some instructions are left
unchanged and others are altered. Exemplary alterations
include:

10

15

20

25

30

40

45

50

55

60

65

10

a. register IDs are replaced, based on the order in which they
appear inside the function block;

b. constant values and offsets are eliminated;

c. PUSH followed by POP sequences are replaced with
MOV instructions;

d. Sequences which set the value of a variable/register/
memory address to 0 (e.g. XOR <item>, <item>) are
replaced with MOV <item>, 0,

e. Addition/subtraction of 1 or 2 is replaced with one or two
INC/DEC instructions, respectively.

f. JZ/INZ instructions are replaced with JE/JNE instructions,
respectively;

g. Function prologues and epilogues are removed;

h. Instruction classes CMP, MOV and TEST are removed;
i. Non-operations (ADD and SUB with 0; NOP etc.) are
removed.

FIG. 7 shows an example of code normalization, accord-
ing to some embodiments of the present invention. A frag-
ment of code disassembled from an exemplary target object
comprises a function block 70. In some embodiments,
function blocks start with a PUSH EBP; MOV EBP, ESP
instruction sequence and they end with POP EBP. Each line
of code (processor instruction) from function block 70 is
modified according to the prescription listed on the right, to
produce a corresponding normalized function block 72.

In a step 216 (FIG. 6), client AM application 40 computes
an object data indicator (ODI) of the target object. In some
embodiments, the ODI comprises a plurality of code block
indicators, each code block indicator indicative of a distinct
code block of the target object. An exemplary code block
indicator comprises an opcode pattern of the respective code
block.

In some embodiments, a code block comprises a sequence
of consecutive processor instructions, the sequence
extracted from the normalized code of the target object. In
some embodiments, code blocks comprise a predetermined,
code-independent number of instructions. Alternatively, the
count of instructions within a code block varies within a
predetermined range. Exemplary code blocks comprise
between 5 and 50 contiguous instructions. In some embodi-
ments, the size (e.g., number of instructions) of code blocks
is substantially smaller than the size of function blocks, so
that a function block may comprise more than one code
block. In some embodiments, code blocks start either at the
start of a function block, or at a CALL instruction. An
exemplary code block 74 is shown in FIG. 7.

In some embodiments, step 216 comprises separating the
target object into code blocks, and extracting a set of opcode
indicators from each such code block. FIG. 8 shows an
exemplary binary memory representation of a processor
instruction 80 (illustrated for the Intel® x86, 32 bit family of
processors). In some embodiments, each processor instruc-
tion is stored in memory as a sequence of bytes, the sequence
comprising a set of instruction fields, such as a Prefix field
82a, a couple of Opcode fields 82b-c, a Mod/Reg/R/M field
82d, and a Displacement/Data field 82e¢. In some embodi-
ments, Opcode fields 8256-c¢ encode the type of instruction
(e.g., MOV, PUSH, etc.), while fields 82a, 82d-e encode
various instruction parameters (e.g. register names, memory
addresses, etc.). In some embodiments, such as the x86
format, the byte size and content of instruction fields are
instruction-dependent, and therefore the instructions for the
x86 architecture are of varying lengths. The instruction
illustrated in FIG. 8 (XOR CL, 12H) comprises only the first
Opcode byte (10000000 for XOR), the Mod/Reg/R/M byte
(11110001 for register CL), and the Displacement/Data byte
(00010010 is binary for 12H), while other instructions may

US 9,479,520 B2

11

comprise both opcode fields, or other combinations of
Prefix, Opcode, Mod, Reg and/or Data fields.

FIG. 9 shows an exemplary opcode pattern 90 corre-
sponding to code block 74. In some embodiments, opcode
pattern 90 is a data structure (e.g. byte sequence, list, etc.)
comprising a set of opcode indicators 92, each opcode
indicator corresponding to a processor instruction of nor-
malized code block 74. Exemplary opcode indicators 92
comprise the contents of the Opcode fields of the respective
processor instruction, in which case opcode pattern 90
comprises a sequence of instruction types making up the
respective code block. In the embodiment illustrated in FIG.
9, each opcode indicator 92 comprises a combination of
opcode bytes and parameter bytes (for example, the opcode
indicator for instruction PUSH EDX is 52 in hex).

FIG. 10 illustrates a fragment of normalized code and an
exemplary ODI 100 of the fragment, according to some
embodiments of the present. ODI 100 comprises a plurality
of codeblock indicators 104a-c, each codeblock indicator
providing a digest (e.g., fingerprint, signature) of a respec-
tive code block 74a-c. An exemplary codeblock indicator
104a-¢ comprises the respective opcode pattern 90a-c. In
some embodiments, codeblock indicators 104a-¢ comprise
hashes of opcode patterns 90a-c, respectively, as illustrated
in FIG. 10. Beside codeblock indicators 104a-c, some
embodiments of ODI 100 may comprise an object identifier
102 (e.g. a file ID) tagging the respective target object,
and/or a set of object feature indicators 106 of the target
object. Exemplary object feature indicators comprise a file
size (e.g. 130 kB), an indicator of file type (e.g. whether a
file is an executable, a DLL, etc.), a memory address of the
target object, and a set of numbers indicating an outcome of
a set of anti-malware heuristic tests (e.g., whether the target
object displays certain malware-specific behaviors or con-
tent), among others. In some embodiments, object feature
indicators 106 may be computed by AM scanners 42-44, e.g.
during the preliminary scan of the target object (step 202).

For simplicity, the rest of the Specification will assume
that codeblock indicators 104a-c¢ comprise hashes of opcode
patterns 90a-c. Execution of step 216 (FIG. 6) then proceeds
as follows. Client AM application 40 may separate the target
object into distinct code blocks (illustrated by code blocks
74a-c in FIG. 10). For each code block 74a-c, application 40
may proceed to calculate an opcode pattern 90a-c, respec-
tively, as shown in FIG. 9. Application 40 may then invoke
hashing engine 54 to compute a hash of opcode pattern
90a-c, to produce the respective codeblock indicator (i.e.,
target hash) 104a-c. Hashing engine 54 may employ a
hashing algorithm such as cyclic redundancy check (CRC),
message digest (MD), or secure hashing (SHA), among
others.

After computing target ODI 100, in a step 218 (FIG. 6),
client AM application 40 performs a lookup of the ODI in
client-side cache 56. If the ODI matches a cache record
(cache hit), indicating that the respective target object has
already been scanned for malware at least once, application
40 proceeds to a step 220, to label the target object according
to the cache record (e.g., clean or malware), and advances to
step 232 discussed above.

If target ODI 100 is not matched in client-side cache 56,
in a step 222 application 40 may invoke client AM com-
munication manager 52 to initiate a client-server scanning
transaction. Communication manager 52 transmits target
ODI 100 to AM servers 20a-c, and in a step 224 receives
scan report 50 from servers 20a-c. In some embodiments,
each ODI may form part of a distinct client-server scanning

25

30

35

40

45

60

12

transaction, or multiple ODIs may be transmitted simulta-
neously, within the same transaction (batch processing).

In a step 226, application 40 determines whether the target
object is whitelisted (clean) according to scan report 50. If
yes, the target object is labeled as non-malicious (step 228).
If the target object is malicious according to scan report 50,
application 40 labels the target object as malware (step 208).

FIG. 11 shows an exemplary sequence of steps performed
by server AM application 60 (FIG. 5) according to some
embodiments of the present invention. In a step 302, server
AM communication manager 62 receives target ODI 100
from client computer system 30. In a step 304, application
60 performs a lookup of ODI 100 in server-side cache 68. If
the ODI matches a cache record (cache hit), indicating that
the respective target object has already been scanned for
malware at least once, application 60 proceeds to a step 306,
to label the target object according to the cache record (e.g.,
clean or malware). In a step 308, communication manager
62 compiles scan report 50 and transmits report 50 to the
respective client computer system 30.

If no record of ODI 100 is found in server-side cache 68,
in a step 310 server AM application 60 filters the hashes of
ODI 100 to produce a relevant subset of hashes. In some
embodiments, hashes of opcode patterns which are not
object-specific may be discarded from ODI 100 to improve
the performance of malware scanning. Such non-specific
opcode patterns correspond for example to unpacker code
(e.g. installer, self-extractor) and/or library code, or are
present in both clean and malware objects.

In a step 312, for each hash of ODI 100, server AM
application 60 may query whitelist database 65 to retrieve a
set of whitelisted reference objects containing the respective
hash. In some embodiments, a heap-based algorithm is used
to rank the retrieved reference objects according to their
similarity with the target object.

In a step 314, server AM application 60 invokes code
comparator 64 to compute a similarity score characterizing
how similar the target object is to each whitelisted reference
object retrieved in step 312. In some embodiments, the
similarity score is computed according to the formula:

c]

5= i

wherein C denotes the number (count) of hashes common to
both the target object and the respective reference object, N
denotes the number (count) of hashes of the target ODI,
filtered as discussed in step 310 above, and wherein Ny
denotes the number (count) of hashes of the reference object.

Alternative embodiments may compute the similarity
score according to formulas such as:

2]
§=200% ——
N7+ Ny
or
Sos0 (C C] [3]
= * N_T+N_R

In astep 316, application 60 compares the similarity score
(e.g., formula [1]) to a predetermined threshold. When the
similarity score exceeds the threshold, indicating that the
target object is similar to at least one whitelisted object,
some embodiments of server AM application 60 may label

US 9,479,520 B2

13

the target object as non-malicious (clean) in a step 318. An
exemplary value of the whitelisting threshold is 50, indicat-
ing that a target object is whitelisted when it shares more
than 50% of its opcode patterns with a whitelisted object.

Next, a step 320 updates whitelist database 65 with a
record of the current target object, and a step 322 updates
server-side cache 68 with a record of the target object and an
indicator of the scan result (e.g., clean).

When the whitelisting similarity score (step 318) does not
exceed the threshold, indicating that the target object is not
sufficiently similar to any known whitelisted object, server
AM application moves on to a step 324, wherein target ODI
100 is compared to a set of records of malware objects. In
some embodiments, the set of hashes of ODI 100 is further
filtered to remove all hashes which matched records from
whitelist database 65 (see step 312 above), therefore retain-
ing a subset of hashes which are not found in any known
whitelisted object. For each such unrecognized hash of the
target object, code comparator 64 may query malware and/or
outbreak databases 66-67 to retrieve a set of malware objects
containing the respective hash. In a step 326, code com-
parator 64 may then proceed to compute a malware simi-
larity score indicating how similar the target object is to each
such malware object. In some embodiments, code compara-
tor 64 uses any of the formulae [1-3] described above to
compute the malware similarity score.

A step 328 compares the malware similarity score to a
preset threshold. When the malware similarity score exceeds
the threshold, indicating that the target object is similar to at
least one malware object stored in databases 66-67, in a step
330 the target object is labeled as malware. An exemplary
threshold for classification as malware is 70 (i.e., the target
object shares at least 70% of opcode patterns with a known
malware object). Next, malware and/or outbreak databases
66-67 are updated to include a record of the target object.
Server-side cache 68 is updated to include a record of the
target object and an indicator of its malware status (e.g.,
infected), and a scan report is compiled and transmitted to
the client computer system (step 308).

When the malware similarity score does not exceed the
threshold, indicating that the target object is not similar to
known malware objects, some embodiments of server AM
applications may label the target object as whitelisted/non-
malicious (step 318), and update whitelist database 65
accordingly.

Target ODI 100 may also trigger a malware outbreak alert.
In some embodiments, server AM application 60 counts the
reference objects from outbreak database 67, objects which
are similar to the target object and have been received by
AM server systems 20a-¢ within a predetermined timeframe
(e.g., the latest 6 hours). When the count exceeds a threshold
(e.g., 10), a malware outbreak is assumed and the target
object, as well as all reference objects similar to it, are
marked as infected. Malware and/or outbreak databases
66-67 are then updated accordingly.

The exemplary systems and methods described above
allow an anti-malware system to maintain a flexible whitelist
database, and to use the whitelist database to improve the
malware detection performance.

In conventional whitelisting applications, a hash of a
target object (computer file or process) is compared to a set
of hashes corresponding to whitelisted objects (objects
trusted to be clean). If the hash of the target object matches
a whitelisted hash, indicating that the target object is iden-
tical to at least one of the whitelisted objects, the target
object is trusted and e.g., allowed to execute. Due to certain
mathematical properties of hash functions, conventional

10

15

20

25

30

35

40

45

50

55

60

65

14

whitelisting does not allow for variations in the code of
whitelisted objects: if two objects differ by as little as one
bit, the hashes of the two objects no longer match. Mean-
while, legitimate computer files and processes may display
substantial variations, due for example to differences
between compilers or between successive versions of the
same software.

Some embodiments of the systems and methods described
above allow an anti-malware system to account for benign
differences between data objects, such as differences intro-
duced by compilers and other polymorphisms. A target
object is separated into a multitude of code blocks, and a
hash is calculated for each code block. The obtained set of
target hashes is then compared against a database of hashes
corresponding to code blocks extracted from whitelisted
objects. A target object may be labeled as whitelisted
(trusted) if it has a substantial number of hashes in common
with a whitelisted object. Objects which are slightly different
from known whitelisted objects may still receive whitelist-
ing status. By allowing a certain degree of mismatch
between the sets of hashes of distinct objects, some embodi-
ments of the present invention increase the efficiency of
whitelisting without an unacceptable decrease in data safety.

The size of a code block may be decided according to
several criteria. Small code blocks (e.g., a few processor
instructions each) may lead to a large number of hashes per
target object, which may increase the storage and processing
load of the anti-malware server and slow down scanning. On
the other hand, small code blocks offer a significant degree
of flexibility: if two objects differ only slightly, the differ-
ences will be picked up only by a small fraction of hashes,
producing a high similarity score. Large code blocks (e.g.,
several hundreds of processor instructions) produce on aver-
age fewer (e.g. several) hashes per target object, and there-
fore are advantageous from a storage and processing per-
spective. However, large code blocks suffer the same
disadvantage as conventional hashing: small differences
between two objects may be picked up by a large proportion
otf'hashes, producing a low similarity score. Testing revealed
an optimal code block size of between 5 and 50 processor
instructions, and in particular about 5-15 (e.g. ~10) instruc-
tions, in some embodiments.

The exemplary systems and methods described above
allow an anti-malware system to conduct a collaborative
client-server scanning transaction, and to assess the malware
status of the target object according to the results of the
server-side scan of the target object. Conducting a part of the
malware scan on a remote anti-malware server has a number
of advantages over local scanning of target objects on a
client computer system.

The proliferation of malware agents and software in
general has contributed to a steady increase in the size of
whitelist and malware hash databases, which may amount to
several megabytes to several gigabytes of data. The exem-
plary methods and systems described above allow storing
the hash databases on the anti-malware server, thus avoiding
the delivery of data-heavy software updates from a corporate
server to a large number of customers on a regular basis.

By performing a significant fraction of malware scanning
centrally on the server, the systems and methods described
above allow for the timely incorporation of hashes of newly
detected malware and of new legitimate software. By con-
trast, in conventional malware detection wherein scanning is
predominantly distributed to client computer systems, infor-
mation gathering about new security threats and new

US 9,479,520 B2

15

whitelisted software may involve indirect methods, taking
significantly longer to reach the anti-malware software pro-
ducers.

The size of files exchanged between client and anti-
malware server systems described above is kept to a mini-
mum. Instead of sending entire target objects from the client
to the server for server-side scanning, the exemplary meth-
ods and systems described above are configured to exchange
hashes, which may amount to several bytes to several
kilobytes per target object, thus significantly reducing net-
work traffic.

It will be clear to one skilled in the art that the above
embodiments may be altered in many ways without depart-
ing from the scope of the invention. Accordingly, the scope
of the invention should be determined by the following
claims and their legal equivalents.

What is claimed is:

1. A method comprising:

employing at least one hardware processor of a computer

system to receive a plurality of target hashes computed
for a target data object, each target hash representing a
distinct sequence of processor instructions of the target
data object;

employing at least one hardware processor of the com-

puter system to retrieve a plurality of reference hashes
representing a whitelisted data object; and

employing at least one hardware processor of the com-

puter system to label the target data object as non-
malicious in response to determining that the plurality
of target hashes is not identical to the plurality of
reference hashes, and in response to determining,
according to a count of hashes common to both the
plurality of target hashes and the plurality of reference
hashes, that the plurality of target hashes and the
plurality of reference hashes share a sufficient number
of items.

2. The method of claim 1, wherein each target hash
comprises a hash of an opcode pattern, the opcode pattern
comprising a sequence of instruction indicators, each
instruction indicator indicative of a processor instruction of
the distinct sequence of processor instructions.

3. The method of claim 1, wherein retrieving the plurality
of reference hashes is performed in response to receiving the
plurality of target hashes.

4. The method of claim 1, wherein the distinct sequence
of processor instructions consists of between 5 and 50
consecutive processor instructions.

5. The method of claim 4, wherein the distinct sequence
of processor instructions consists of between 5 and 15
consecutive processor instructions.

6. The method of claim 1, wherein the distinct sequence
of processor instructions starts with a CALL instruction.

7. The method of claim 1, further comprising:

employing at least one hardware processor to perform a

code normalization procedure on the target data object
to produce a normalized object, and wherein the dis-
tinct sequence of processor instructions consists of a
sequence of processor instructions of the normalized
object; and

employing at least one hardware processor to apply a hash

function to the distinct sequence of processor instruc-
tions to produce the target hash.

8. The method of claim 1, wherein the target data object
comprises a computer file.

9. The method of claim 1, wherein the target data object
comprises a computer process.

20

40

45

50

55

60

65

16

10. A non-transitory computer-readable medium storing
instructions which, when executed by a computer system
having at least one hardware processor, cause the computer
system to:

receive a plurality of target hashes computed for a target

data object, each target hash representing a distinct
sequence of processor instructions of the target data
object;

retrieve a plurality of reference hashes representing a

whitelisted data object, and

label the target data object as non-malicious in response

to determining that the plurality of target hashes is not
identical to the plurality of reference hashes, and in
response to determining, according to a count of hashes
common to both the plurality of target hashes and the
plurality of reference hashes, that the plurality of target
hashes and the plurality of reference hashes share a
sufficient number of items.

11. The computer-readable medium of claim 10, wherein
each target hash comprises a hash of an opcode pattern, the
opcode pattern comprising a sequence of instruction indi-
cators, each instruction indicator indicative of a processor
instruction of the distinct sequence of processor instructions.

12. The computer-readable medium of claim 10, wherein
retrieving the plurality of reference hashes is performed in
response to receiving the plurality of target hashes.

13. The computer-readable medium of claim 10, wherein
the distinct sequence of processor instructions consists of
between 5 and 50 consecutive processor instructions.

14. The computer-readable medium of claim 13, wherein
the distinct sequence of processor instructions consists of
between 5 and 15 consecutive processor instructions.

15. The computer-readable medium of claim 10, wherein
the distinct sequence of processor instructions starts with a
CALL instruction.

16. The computer-readable medium of claim 10, wherein
the instructions further cause the computer system to:

perform a code normalization procedure on the target data

object to produce a normalized object, and wherein the
distinct sequence of processor instructions consists of a
sequence of processor instructions of the normalized
object; and

apply a hash function to the distinct sequence of processor

instructions to produce the target hash.

17. The computer-readable medium of claim 10, wherein
the target data object comprises a computer file.

18. The computer-readable medium of claim 10, wherein
the target data object comprises a computer process.

19. A computer system comprising at least one hardware
processor and a memory, the at least one hardware processor
configured to form:

means for receiving a plurality of target hashes computed

for a target data object, each target hash representing a
distinct sequence of processor instructions of the target
data object;

means for retrieving a plurality of reference hashes rep-

resenting a whitelisted data object, and

means for labeling the target data object as non-malicious

in response to determining that the plurality of target
hashes is not identical to the plurality of reference
hashes and in response to determining, according to a
count of hashes common to both the plurality of target
hashes and the plurality of reference hashes, that the
plurality of target hashes and the plurality of reference
hashes share a sufficient number of items.

US 9,479,520 B2
17

20. The system of claim 19, wherein retrieving the plu-
rality of reference hashes is performed in response to receiv-
ing the plurality of target hashes.

#* #* #* #* #*

18

